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Sr14Cu24O41 : a complete model for the chain sub-system
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A second neighbor t−J +V model for the chain subsystem of the Sr14Cu24O41 has been extracted
from ab-initio calculations. This model does not use periodic approximation but describes the entire
chain through the use of the four-dimensional crystallographic description. The link between the
parameters variations and the structural distortions have been discussed. This model allowed us
to understand the origin of the chain dimerization and predicts correctly the relative occurrence of
dimers and free spins. The orbitals respectively supporting the magnetic electrons and the holes
have been found to be essentially supported by the copper 3d orbitals (spins) and the surrounding
oxygen 2p orbitals (holes), thus giving a strong footing to the existence of Zhang-Rice singlets.

PACS numbers: 71.10.Fd, 71.27.+a, 71.23.Ft

I. INTRODUCTION

One-dimensional quantum systems have attracted a
lot of attention in the past decade due to the large di-
versity of their low energy physics. In particular, spin-
chains and spin-ladders systems have been extensively
studied. The characteristic of the Sr14−xAxCu24O41

(A = Ca, Ba, Y, Bi, etc.) family of transition-metal ox-
ides is that they are composed of both spin-chains and
spin-ladders sub-systems. The compounds are formed
of alternated layers (in the (a, c) plane) of each of the
two subsystems1. Both ladder and chains are in the c

direction. However their respective translation vectors
(cc and cl) are incommensurate. In the pure compound,
Sr14Cu24O41, the layers are largely separated (≃ 3.3Å)
and considered as electronically non interacting. Never-
theless, the low energy properties of Sr14Cu24O41 agree
neither with those of spin-chains, nor with the properties
of spin-ladders.

Sr14Cu24O41 is a semiconductor with a 0.18 eV gap2 at
T < T ⋆ = 250K. The spin ladders have a singlet ground
state with a spin gap of about 35− 47 meV3,4,5. Surpris-
ingly the spin chains also exhibit a singlet ground state
with a spin gap of 11−12 meV 2,5,6,7,8 while homogeneous
spin chains are known to be gap-less in the spin-channel.
Susceptibility and ESR measurement2,9 suggested that
the spin gap in the chains is due to the formation of
weakly interacting spin dimers. Neutron scattering ex-
periments3 have latter confirmed their existence.

The spins are supported in the chain subsystem by
the 3dac orbitals of the Cu2+ ions, and in the ladder
subsystem by the 3da2

−c2 orbitals of the Cu2+ ions. In
the chain subsystem the magnetic orbitals are coupled
via two nearly 90◦ Cu–O–Cu bonds. Let us note at
this point that, in such geometries, the super-exchange
paths through the oxygen orbitals interact destructively
and therefore nearest-neighbor (NN) exchange interac-
tions are expected to be small and ferromagnetic. In the
ladder subsystem, the picture of the NN interactions is
very different since there are mediated via nearly 180◦

Cu–O–Cu angles. Such geometries are known to produce

strong super-exchange mechanism via the bridging lig-
ands and thus large anti-ferromagnetic interactions.

Formal charge analysis shows that the Sr14Cu24O41

compound is intrinsically doped with six holes by for-
mula unit (f.u.). Similar to high-Tc superconductors, the
holes were expected to be mainly supported by the oxy-
gen 2p orbitals and to form Zhang-Rice10 singlets with
the associated-copper hole. NEXAFS (Near Edge Xray
Absorption Fine Structure) experiments11 have later sup-
ported this assumption.

It has been established, from neutron scattering3 and
X ray spectroscopy12 experiments, that the chain dimeric
units are formed by next-nearest-neighbor (NNN) spins
separated by a Zhang-Rice singlet (ZRS). Cu NMR mea-
surements exhibited the presence of two kinds of ZRS on
the chains4, namely with intra- and inter-dimer localiza-
tion. The relative occurrence of the two types of ZRS
(0.65 ≃ 1/2) led the authors to propose a charge-order
model with dimers separated by two ZRS. This assump-
tion has been confirmed by neutron scattering experi-
ments7,13 that have shown to be consistent with a five
units periodicity. Such a picture leads to a chain filling
of 6 holes per f.u., that is with all the holes located on
the chains. The question of the holes repartition between
the chain and ladder subsystems is however still under de-
bate. Indeed, NEXAFS experiments11 evaluated to 0.8
the number of holes on the ladders legs oxygens. On the
contrary, magnetic susceptibility measurements2 exhibit
a filling of 3.5 spins per f.u., that is 0.5 more holes than
the maximum number given by the formal charge analy-
sis.

The origin of the chain electronic dimerization has
only recently being elucidated. The hypothesis of a spin-
Peierls transition have been rapidly eliminated since the
expected signatures in the magnetic susceptibility and
specific heat were not found. It thus has long been sup-
posed that the dimerization originated from the competi-
tion between first and second-neighbor spin interactions
as predicted by Majumdar and Gosh14 and Haldane15.
Recent ab initio calculations16 have however shown that
the origin of the dimerized state is of structural origin,
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even if not of spin-Peierls one. Indeed, this is the struc-
tural incommensurate modulation of the chain subsys-
tem, with the periodicity of the ladder one, that strongly
modulates the spin/hole orbital energy and localizes the
spins in a dimer pattern.

These incommensurate structural modulations, that
are most of the time neglected, have thus proved to be
crucial for the low energy properties of this system. Inde-
pendently to the orbital energy modulations, the struc-
tural distortions of the chain subsystem can be expected
to strongly influence both effective exchange and hop-
ping integrals. The present work thus aims at giving
a complete description of the chain subsystem within a
second neighbor t−J+V model, taking explicitly into ac-
count the structural incommensurate modulations. The
incommensurate character of the problem will be treated
within the four-dimensional representation and we will
describe the electronic structure without the use of a pe-
riodic approximation. The next section will describe the
ab-initio methods used in the present calculations. Sec-
tion III will present ab-initio evidence of the Zhang-Rice
singlets. Section IV will give the second neighbor t−J+V
model as a function of the fourth crystallographic coordi-
nate τ . Section V will detail the filling analysis resulting
from the proposed model. Finally section VI will focus
on the conclusion.

II. THE AB-INITIO METHOD

It is well known that magnetic and transfer interactions
are essentially local in strongly correlated systems and
can thus be accurately evaluated using embedded frag-
ment ab-initio spectroscopy methods17. The long range
electrostatic effects are treated within a bath composed
of total-ion pseudo-potentials18 and charges. The open-
shell character of the magnetic/hole orbitals, the strong
electronic correlation as well as the screening effects
are efficiently treated using quantum-chemistry ab-initio
spectroscopy methods. The present calculations have
been performed using the Difference-Dedicated Configu-
ration Interaction method19 that have proved to be very
efficient on copper and vanadium compounds such as
high Tc copper oxides20 or the famous α′NaV2O5 com-
pound21.

The quantum fragments are defined so that to include
(i) the magnetic centers, (ii) the bridging oxygens me-
diating the interactions, and (iii) the first coordination
shell of the preceding atoms which is responsible for the
essential part of the screening effects. First neighbor in-
teractions are thus determined using Cu2O6 fragments
(see figure 1a), while second-neighbor ones are computed
using Cu3O8 fragments (see figure 1b). NN exchange, J1,
is directly given by the singlet-triplet excitation energy
when two magnetic electrons are considered in the small
fragment. NN hopping, t1, and magnetic electron/hole
orbital energy differences δε are extracted from the first
two doublet states of the same fragment with one elec-

tron less. NNN exchange interactions J2 are extracted
from the doublet-quartet excitations energies from the
three-centers fragment with 3 magnetic electrons. NNN
hopping and first neighbor bi-electronic Coulomb repul-
sion are obtained from the 3 singlets and 3 triplets of
same fragment with one magnetic electron less. Let us
point out that the 3 centers calculations also yield the NN
interactions. The comparison between the evaluations of
the first-neighbor integrals obtained from the 2 centers
and 3 centers fragments allows us to verify the relevance
of the chosen model and the fragment size dependence of
our calculations. A least-square fit method is used in or-
der to extract the effective parameters from the ab-initio
calculations. The conditions imposed for this purpose are
that the effective model should reproduce

• the computed excitations energies,

• the projection of the computed wave-functions
within the configuration space generated by the
magnetic orbitals.

Let us note that the norm of the later projection gives
us a measure of the model validity. Indeed, the ab-initio
wave-functions (which is expanded over several millions
of configurations) projects over the model configuration
space based only on the magnetic orbitals (typically of
the order of 10 configurations) with a norm as large as
0.8. One can thus assume that this model space is appro-
priate to describe the low energy physics of the system.

FIG. 1: a) Schematic representation of the computed frag-
ments. a) two centers b) three centers. The gray circles
represent oxygen atoms, while the black circles represent the
copper atoms.

Let us now address the embedding problem for incom-
mensurate systems. The usual embedding technique con-
sists of reproducing the Madelung potential using a set
of point charges, located at the crystallographic positions
over a box of at least 15 to 20 Å around the fragment22.
These charges are adjusted on the bath borders according
to an Evjen procedure23. In the case of a periodic ionic
crystal this method insures the nullity of both the sys-
tem charge and dipole moment, both conditions are nec-
essary to insure a good representation of the Madelung
potential. In the present incommensurate case, however,
the Evjen procedure fails to suppress the dipole moment.
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This is due to the fact that the chain and ladder subsys-
tems are not electrostatically neutral. The relative dis-
placement of one compared to the other thus induces a
dipole moment in the chain/ladder direction. In order to
solve this problem, and to cancel out the dipole moment
contribution, we adjusted the charges of the outermost
unit cells of each subsystem, in the c direction, using a
global scaling factor for each adjusted cell24.

The type of calculations have been done on 11 equiv-
alent fragments located at 11 successive positions in the
chain direction. These 11 fragments give a quite good
representation of the different distortions occurring on
the chain subsystem. In order to fully represent the whole
chain subsystem, these 11 sets of results have been ex-
trapolated, using Fourier’s series analysis, as a function
of the crystallographic fourth coordinate τ , associated
with the system incommensurate modulations.

Let us notice that in a complete crystallographic de-
scription25, each atom possesses a fourth fractional coor-
dinate τi = ri · k = zicc/cl, where ri is the atom position,
k = c⋆

ccc/cl is the modulation vector, zi is the fractional
coordinate of the atom in the c direction. In the model
Hamiltonian used in present work, τ corresponds to the
fourth coordinate of the chain unit-cell copper atom. It
is defined except for a constant.

III. THE ZHANG-RICE SINGLETS

As previously noticed, it has been supposed in the lit-
erature that the holes (both in the chain and ladder sub-
systems) are not located on the copper atoms but rather
on the surrounding oxygens. This assumption has been
done by analogy with the high Tc copper oxides and has
later been comforted by NEXAFS experiments11 as far
as ladder holes are concerned. We have thus derived from
our ab-initio calculations the nature and composition of
both the magnetic (supporting the spins) and hole or-
bitals.

The magnetic orbitals have been obtained, from the 2
centers fragment calculations, as the triplet natural or-
bitals (eigenfunctions of the one-electron density matrix)
with an occupation number close to 1. In order to lo-
cate the hole orbitals we compared two calculations on
the same fragment with one electron difference. The hole
orbitals have been extracted from the difference between
twice the triplet density-matrix and the sum of the two
doublet ones. The hole orbitals are thus the two eigen-
functions of the resulting matrix associated with eigen-
values close to 1.

Figure 2 represents a typical example of both the mag-
netic (a) and hole (b) orbitals on a site. It clearly appears
that while the magnetic orbital is essentially supported
by the 3dac copper orbital with a delocalization tail on
the surrounding 2p oxygens orbitals, the hole orbital is
essentially supported by the 2p oxygen orbitals with a
small tail on the 3dac orbital of the copper atom. The
average repartition between copper and oxygens — over

a) b)

FIG. 2: a) Example of magnetic orbital supporting the spin,
b) associated hole orbital.

the 11 calculations — are as follow :

• for the magnetic orbital : 67% on the copper and
33% on the oxygens,

• for the hole orbital : 15% on the copper and 85%
on the oxygens.

The fluctuation of the above repartition on the 11 com-
puted fragments is very small with a standard deviation
of only 1.3%.

The present results showing the existence of different
orbitals, respectively supporting the spins and the holes,
constitute a direct evidence of the ZR singlets in the sys-
tem.

IV. THE t − J + V MODEL

The model Hamiltonian describing physics of the chain
subsystem has been chosen as currently accepted in the
literature, that is as a second-neighbor t− J + V model.
Let us recall the justifications of this model.

• The strongly correlated character of the 3d copper
orbitals, as well as the low filling of the system,
justify the exclusion of an explicit reference to the
configurations where the magnetic orbitals are dou-
bly occupied, and thus a t−J type of Hamiltonian.

• The nearly 90◦ Cu–O–Cu angle is responsible for
weak first neighbor interactions. Second neighbor
interactions are thus competitive with the NN ones
and must be taken explicitly into account.

The computed results have been fitted, as a function of
the fourth crystallographic coordinate τ , using a Fourier
series, according to the following expression

a0 +
∑

n

an cos (2πnτ − ϕn) (1)

Only terms with a non negligible contribution to the se-
ries have been retained. It results that the orbital ener-
gies, hopping integrals and NN repulsion terms can ac-
curately be obtained from a unique cosine. Exchange
integrals, however, necessitate two components to be re-
liably reproduced, as can be expected from the quadratic
dependence of the latter to the hopping integrals.
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The results are summarized in table I. Let us notice
that only terms with even frequencies have a non negli-
gible contribution (n = 2 and n = 4 in eq. 1). This can
be interpreted as a doubling of the modulation vector k.
The fourth coordinate of a unit cell is thus given by

τ = z × 2 cc/cl ≃ z × 2 × 7/10

where z is the fractional coordinate in the c direction
of the unit cell copper atom. It thus clearly appears
that the model Hamiltonian presents a 5 unit cell quasi-
periodicity. This point is in agreement with the neutron
scattering experiments7,13 that sees a pseudo periodicity
of the spin arrangement corresponding to five chain unit
cells.

ε (eV) V (eV) t1 (meV) t2 (meV) J1 (meV) J2 (meV)
a0 0 0.661 132.0 214.3 20.88 −6.81
a2 0.600 −0.063 −67.2 −45.3 −2.63 1.80
ϕ2 0 −0.353 −0.401 −0.442 −0.329 −0.450
a4 4.2 −2.29 0.26
ϕ4 0.521 −0.411 −0.368

TABLE I: Analytic fit of the t−J+V second neighbor model.

A. The orbital energies

Figure 3 displays the orbital energy differences between
two neighboring sites as a function of τ as well as the hole
orbital energies deduced from them. One sees immedi-
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FIG. 3: a) Energy difference between NN hole orbitals as a
function of τ . The circles correspond to the computed values,
the solid line to the Fourier fit. b) Resulting hole orbital
energies, the energy zero have been chosen to be the average
value.

ately that the orbital energy modulations are very large

and spans a 1.2 eV range. In fact, these variations are
larger (see table I) than any of the other parameters of
the system, exept for the NN electron-electron repulsion.
As we already showed in reference16 this parameter is
responsible for the electron localization and ordering.

The orbital energies are dependant on different param-
eters. The most important are (i) the amount of delo-
calization toward the neighboring atoms (strongly affects
the kinetic energy), (ii) the electrostatic potential from
the rest of the crystal. In the present cas, we have seen
that the delocalization of the spin and hole orbitals on
the oxygen atoms is nearly constant. The variation of
the orbital energy can thus be expected to be induced
by the variation of the Madelung potential. Figure 4
reports the variation of the orbital energy differences be-
tween NN sites as a function of the related Madelung
potential energy differences on the copper sites (centroid
of the orbitals). One notice immediately the nearly per-

−3 −2 −1 0 1 2 3
NN Potential Diff. (eV)

−1.5
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1.5

∆ε
 (

eV
)

FIG. 4: Orbital energy differences between NN sites as a func-
tion of the associated Madelung potential energy differences
computed on the orbital centroid (copper sites).

fect scaling between the Madelung potential and the or-
bital energy, thus confirming the above analysis. Let us
point out that this scaling does not appear as clearly if
one plots the orbital energy differences as a function of
the Madelung potential differences, averaged on the four
oxygen atoms.

Let us now analyse the origin of such large Madelung
potential variations. These modulations can originate
from three terms.

• The relative displacement of the ladders and the
chain subsystems in the average structure (due to
incommensurate cl and cc parameters).

• The ladder subsystem modulation.

• The chain subsystem modulation.

Figure 5 reports the Madelung potential differences be-
tween NN copper sites taking into account independantly
these three effects. One notice immediately that the in-
fluence of the incommensurability alone has a nearly neg-
ligeable effect on the Madelung potential variations. In-
deed, its amplitude is of only 30 meV. One could how-
ever have expected it to strongly contribute since the
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FIG. 5: Madelung potential differences between NN copper
sites, dashed : computed only from the average crystallo-
graphic structure, dot-dashed : with added ladder modula-
tions, long-dashed : with added chain modulations, solid-line :
with both chain and ladder modulations (exact structure).

strontium ions are attached to the ladders and are lo-
cated close to the chains. The ladder subsystem influ-
ence is quite small even if non negligeable, with a range
of 0.73 eV. In fact, the origin of the chain potential vari-
ations comes mainly from the chain modulation itself.
Indeed, it accounts for more than 95% of the potential
modulation.

B. The NN hopping and exchange effective

integrals

Figure 6 reports the NN effective hopping and ex-
change integrals as a function of the fourth crystallo-
graphic coordinate τ . These integrals have been eval-
uated both from the two-centers and three-centers frag-
ments. The three-centers fragments used in the calcula-
tions have been chosen in successive positions along the
chain. Thus, each NN integral appears in two successive
fragments yielding independant evaluations. One should
first notice that the three independant evaluations of the
the NN hopping, t1, and exchange, J1, integrals yield the
same values, thus validating the second neighbor t−J+V
model used in the present work. Indeed, whether other
interactions or orbitals would have been of importance,
the two-centers and three-centers calculations would have
given different evaluations of the integrals so that to com-
pensate the inability for the model to reproduce the low-
energy local physics.

The hopping integrals vary over a large range of values,
namely from 65meV to 200meV. This can be understood
by the fact that the hopping is strongly mediated through
the oxygens bridge as soon as the Cu–O–Cu angles are
different from 90◦. Indeed, the Cu–O–Cu angle modula-
tions range between 90◦ and 96◦. The exchange integral
is, as expected, ferromagnetic. Its amplitude of relative
variation is much weaker than the hopping one. Namely,
it ranges between 17 meV and 26 meV. This smaller am-
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FIG. 6: Nearest-neighbor effective hopping (a) and exchange
(b) integrals as a function of τ . The circles correspond to
the two-coppers fragment calculations, the cross to the three-
coppers calculations and the solid line to the Fourier fit.

plitude of the variation is due to the fact that the domi-
nating term is the direct exchange term, responsible for
the ferromagnetic character of the integral. The super-
exchange term, antiferromagnetic in nature and mediated
by the bridging oxygens, is smaller that the direct one. It
is anyway responsible for most of the observed exchange
modulations through the variation of the Cu–O–Cu an-
gle.

C. The NNN hopping and exchange effective

integrals

Figure 7 reports the NNN effective hopping and ex-
change integrals as a function of the fourth crystallo-
graphic coordinate τ . The first thing one notices is that
the second neighbor hopping integrals are larger in ampli-
tude than the first neighbor ones. Eventhough surprising,
because of the large Cu–Cu distances (≃ 5.4Å), this large
NNN hopping is due to the fact that on the contrary to
the NN interactions, the oxygen mediation of the inte-
gral is very strong. Indeed, while the NN hole orbitals
are nearly orthogonal, the NNN hole orbitals strongly
overlap (see figure 2b). The NNN direct exchange term,
ferromagnetic in nature, can be considered as neglige-
able, due to the large copper-copper distance. The NNN
exchange is thus dominated by the super-exchange mech-
anism mediated through the bridging oxygens. It results
a weak, antiferromagnetic integral, in agreement with
the experimental findings. Indeed, these results are to
be compared with the experimental evaluations2 of the
intra-dimer exchange integrals of −11 meV.



6

0 0.2 0.4 0.6 0.8 1
 τ

−10

−9

−8

−7

−6

−5

J2
 (

m
eV

)

170

190

210

230

250

270

290

t2
 (

m
eV

)

FIG. 7: Next nearest neighbor effective hopping (a) and ex-
change (b) integrals as a function of τ . Crosses correspond to
the computed points, solid line to the Fourier fit.

D. The NN bielectronic repulsion

Figure 8 reports the NN effective repulsion as a func-
tion of the fourth crystallographic coordinate τ . The re-
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FIG. 8: Nearest neighbor effective bi-electronic repulsion as
a function of τ . Crosses correspond to the computed points,
solid line to the Fourier fit.

pulsion integral, V , can be evaluated independantly from
two successive three-centers fragments. One sees that V
is much less sensitive than the other parameters to the
structural modulations. Indeed, its variation range ac-
counts for only 19% of its nominal value, 0.66 eV. Let us
notice, that the two independant evaluations are again
in good agreement.

V. FILLING ANALYSIS

As mentioned above, the large orbital energy variations
induce a localization of the spins (holes) along the chain.

The above model can be used to determine the spins ar-
rangement over a region of the chain. Figure 9 shows
the spins localization over 41 consecutive sites. All the
holes have been supposed to be localized on the chains
since it has been shown in reference16 that this filling
agrees with the experimental data. Indeed, one sees that
the following experimentally-observed properties are cor-
rectly reproduced : i) the presence of a small proportion
of free spins, as seen in magnetic succeptibility measure-
ments, and ii) the formation of second-neighbor dimers
separated by two Zhang-Rice singlets, as seen in neutron
scattering experiments. Nevertheless, the above frag-

FIG. 9: Localization of the spins (holes) on 41 consecutive
sites along the chain.

ment represent only a small fraction of the chain and,
due to the incommensurate character of the crystallo-
graphic structure, there is no warranty that the proper-
ties observed on figure 9 are characteristic of the whole
chain. In order to validate the present electron localiza-
tion model, we need to make a study of the filling using
the four-dimensional crystallographic representation.

The aim of the four-dimensional analysis is to parti-
tion the whole system (here the chains) into physically
pertinents blocks and to detemine (i) the number of dif-
ferent type of blocks, (ii) their relative arrangement and
(iii) their rate of existence in the incommensurate struc-
ture. For this purpose it is usefull to start with a chosen
type of block, expected to be largely represented in the
system. In the present case it could be the dimeric units.
Then, the model hamiltonian is used to determine the ap-
parition of this type of blocks as a function of the fourth
component. The analysis of the remaining sites allows
to determine the other types of significant blocks present
in the system. Finally, the relative arrangement of the
types of blocks can be studied.

As mentioned, we will chose in the present system the
dimeric units as starting blocks. These units are com-
posed of five sites, the three sites of the dimer plus the
two ZR singlets of the neighboring sites (see figure 10).
Let us use the fourth coordinate of the first site (τ1) as the

FIG. 10: The different types of spin blocks appearing in the
chains. Values in paraentheses refer to the percentage of the
chain corresponding to the different types of blocks.

block reference. If one plots the energy of five consecutive
sites as a function of τ1, a dimeric unit will thus be ob-
tained when the energy of the second and fourth sites are
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below the Fermi level, while the energy of the first, third
and fifth sites are above the Fermi level. Figure 11 shows
the orbital energy curves of five consecutive sites as a
function of τ1. Let us notice that, since five sites are rep-
resented by a unique value of τ , only one fifth of the [0, 1]
range is necessary to represent the whole chain. The val-
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FIG. 11: Orbital energies of five consecutive sites as a function
of the fourth coordinate τ1 of the first one. The horizontal
line represent the Fermi level.

ues of τ1 for which the five consecutive sites form a dimer
are represented in gray. It spans a range of twice 0.085.
The proportion of the chain occupied by dimers thus cor-
responds to five time the above ranges, that is 85%. Fi-
nally the number of dimers can be evaluated to 1.70 per
f.u., to be compared to 1.47 dimer per f.u. deduced from
magnetic succeptibility measurements2. Let us now anal-
yse the composition of the remaining 15% of the chain.
For this purpose we will determine the number of sites
separating two consecutive dimers. If τ1 is referencing the
first dimer (that is τ1 ∈ [0.068 ; 0.153] ∪ [0.568 ; 0.653])
than the reference of the second dimer is given by τ ′

1 =
τ1 + n(τ1)cc/cl, where n(τ1) is the smaller integer such
that τ ′

1 ∈ [0.068 ; 0.153] ∪ [0.568 ; 0.653]. At this stage
three cases can occur.

1. case. n(τ1) < 5. In this case, the two successive
dimers overlap, in other words there exist physical
entities larger than the dimers.

2. case. n(τ1) = 5. In this case, the two dimers are
strictly consecutive along the chain.

3. case. n(τ1) > 5. In this case, the two successive
dimers are separated by one or several other type
of blocks of total length : n(τ1) − 5.

In the present system, only n = 5 and n = 8 occurs.
As stated above the former corresponds to consecutive
dimers and the latter to dimers separated by three sites
blocks. As for the dimers, we will reference these blocks
by the fourth coordinate of their first site, that is τ1 +
5 cc/cl. The three sites blocks thus span two ranges :
[0.042 ; 0.068] and [0.542 ; 0.568]. Figure 12 represents

the three sites blocks and the dimer ranges for τ1 < 0.5.
In each region, the orbital energy of each site of the block
has been represented. One sees immediately that the
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FIG. 12: Orbital energy of block sites for the two different
type of blocks given as a function of the fourth coordinate τ1

of the first site of each block. The horizontal line represent
the Fermi level.

three sites blocks are formed by one spin surrounded by
two ZR singlets. Such a configuration can be assossiated
with free spins since the nearest neighbor spin is two
ZR singlets afar. Let us notice that three times the free
spins ranges yields 0.15, that is the total missing part of
the chain. The number of free spins can be now easily
evaluated to 0.5 per f.u., to be compared to 0.55 free
spins per f.u. obtained from the magnetic succeptibility
experiments.

A further analysis of the figure 11 shows that the
dimers are arranged in clusters of three or four dimers
separated by a free spin. It can be evaluated that 54%
of the dimers form three-dimers clusters while 46% form
four-dimers clusters.

VI. CONCLUSION

To summarize the present results, we have determined
a second neighbor t − J + V model for the incommensu-
rate chain subsystem of the Sr14Cu24O41 compound. The
model parameters have been determined using accurate
ab initio calculations on a series of embedded clusters
along the chain. In order to obtain a complete model as a
function of the incommensurate modulation, the ab initio
results have been extrapolated using a Fourier analysis.
The resulting model is thus independant of any periodic
approximation since it is given as a continuous function of
the fourth crystallographic coordinate τ , which describes
the incommensurate modulations along the chain.

It is noticeable that, unlike what is currently as-
sumed in the litterature, the various parameters of the
model, except for the first neighbor bi-electronic repul-
sion, strongly vary as a function of the structural incom-
mensurate modulations. In fact, these variations are so
large that they determine the physics of the system. In
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particular, the orbital energies vary over a surprisingly
large range, and thus dominate the low energy physics
through a strong localization of the electron (resp. holes)
over the low (resp. high) energy sites. It has been iden-
tified that the orbital energy modulation originates in
the Madelung potential modulation associated with the
chain distorsions. Indeed, the orbital energies are shown
to be proportional to the electrostatic potential on the
copper centers, all other effects being at least an order
of magnitude weaker. Another noticeable point is the
weak contribution of the ladder subsystem to the elec-
trostatic potential modulations, despite of its incommen-
surate translation vector with the chain subsystem.

The analysis of the model as a function of the fourth
crystallographic coordinate τ allowed us to show that
the chain ground state can be entirely described only by
second-neighbor dimers and free spins. The dimers are
arranged in clusters of three or four units separated by
a free spin. We retrieve in our calculation the propor-
tion of free spins obtained from magnetic succeptibility

measurements. We have also been able to show that the
holes do not localize on the copper atoms but rather on
the surrounding oxygen p orbitals, thus confirming the
hypothesis of the presence of Zhang-Rice singlets. Three
types of Zhang-Rice singlets can be identified in our cal-
culations, namely the intra-dimer ones, and two types of
inter-dimer ones : those neighboring dimers and those
neighboring free spins. This result is to be put in per-
spective with the copper RMN experiments4 that sees a
splitting of the inter-dimer Zhang-Rice singlets signal at
low temperatures. It would be interresting to quantify
the relative weight of the two signals in order to check
our predicted ratio of 3.4.
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